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Abstract

Forest fires are among the main drivers of deforestation and forest degradation in
the drylands of Sub-Saharan Africa. We use remote sensing data on forest fires and
remaining tree cover to estimate the effectiveness of a project targeted at reducing
fire incidences in twelve protected forests in arid Burkina Faso. The project consisted
of two components that were implemented in the villages surrounding the target
forests: a campaign aimed at raising community awareness about the detrimental
effects of forest fires, and a program to support establishing and maintaining forest
fire prevention infrastructures. Using the Synthetic Control Method we find that the
project resulted in an overall reduction of 35% in the number of days on which an
average forest grid cell was detected to be on fire in the period of the year when fires
tend to be most prevalent – at the very end of the agricultural season. This impact
is, however, short-lived (as the reduction only occurred in the first four years of the
program), and the overall reduction in forest fire occurrences was not sufficiently
large to result in a detectable increase in vegetation cover. We then try to uncover
the underlying mechanisms to shed light on which of the project’s components were
effective, to also learn how the program can be improved.
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1 Introduction

Forest fires rank high among the key causes of global forest degradation and forest loss.

They affect about 2% of the world’s forested area every year (van Lierop et al., 2015;

Tyukavina et al., 2022), and are thus important contributors to both climate change and

biodiversity loss (Moritz et al., 2014; Oreskes, 2004; Kelly and Brotons, 2017; Le Quéré

et al., 2018). Forest fires are especially harmful in Sub-Saharan Africa where they are

responsible for 90% of the continent’s forest loss as well as for 50% of the world’s fire-

related carbon emissions (van Lierop et al., 2015; Andela and van der Werf, 2014). Fires

occur because of natural causes, but the bulk of the forest fires in Sub-Saharan Africa

are the result of economic activity (Le Page et al., 2010; CIFOR, 2016). Fire is used to

clear agricultural land, produce ashes to fertilize the soil, drive out wildlife for hunters,

stimulate the growth of young shoots as feed for cattle, and to produce charcoal as

fuel (Savadogo et al., 2007; Sawadogo, 2009; Potapov et al., 2012; Sow et al., 2013; Curtis

et al., 2018). While forest conservation is recognized as a key strategy to mitigate climate

change (as evidenced by the United Nation’s REDD and REDD+ programs), relatively

little is known about how effective forest conservation policies are in reducing forest fires,

especially so in the dryland forests of Sub-Saharan Africa.

In this paper we evaluate the impact of a policy targeted at reducing both the number

and the geographical spread of forest fires in twelve of Burkina Faso’s 77 protected forests.

Because of the country’s arid climate, forest fires are especially damaging as the combi-

nation of limited annual rainfall and frequent fires prevent tree cover regeneration. Fires

thus increase forest fragmentation in forests where tree canopy cover is sparse already

(Cochrane, 2003; Hoffmann et al., 2009; Staver et al., 2011; Dwomoh et al., 2019). The

program we evaluate can be characterized as a participatory forest management project

aimed at increasing community interest and involvement in forest conservation in line

with, for example, Agrawal and Ostrom (2001). It was designed by the government of

Burkina Faso as part of its Forest Investment Program (FIP), and it was cofunded by

the World Bank and the African Development Bank.

The program was launched in October 2014, and consisted of two main parts. One, the
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program aimed to sensitize communities living in the vicinity of each of the project forests

to the detrimental effects of forest fires. Two, the program also aimed to actively engage

community members in local conservation activities using a combination of technical sup-

port (by experts from the regional and national authorities) and improved coordination

of management activities between adjacent communities. Communities were encouraged

to participate in setting up fire barriers within forests to compartmentalize wildfires,

in establishing forest management infrastructures and in protecting and monitoring the

forests. Taken together, these efforts were expected to reduce both the frequency with

which forest fires were started as well as their spread, and especially so at the end of the

agricultural season (in November and December) when most of the forest fires take place.

We use the Synthetic Control Method (Abadie and Gardeazabal, 2003; Abadie, 2021) to

estimate the impact of the policy intervention over the period 2014-2019, the first six

years after its inception, using remote sensing data.

Overall, we find that the project was not very effective in reducing fire-induced forest

degradation. Forest fires occurrences were reduced in the project forests, but only in the

month of November (the month in which most of the post-harvest forest fires take place),

and also in just the first four years after the start of the program. The program did not

reduce forest fires occurrences in any of the other months in the dry season. And even

though the project managed to decrease the November forest fires by on average 35% in

the first four years, we detect neither a decrease in annual forest fire occurrences nor an

increase in overall vegetation cover.

While the impact of the project was thus limited at best, we perform additional

analyses to gain insight into the mechanisms via which the forest fire occurrences were

achieved in this November month. First, the timing of the impact – the first month

after harvest – suggests that the effect is driven by farmers; additional support for this

hypothesis comes from the fact that most of the reduction of forest fire occurred on

the forest fringe, where agriculture is the main economic activity. Second, we find that

improved forest fire containment is likely to have been the key driver in reducing forest

fire occurrences (although we cannot rule out that the program may have also been
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effective in reducing the number of forest fires started). Combined, these results suggest

that to make the policy more effective, more attention should be paid to the behavioral

aspects of forest fire prevention – among farmers, but especially also among hunters and

livestock herders. Third, we also analyze how estimated treatment effect on November

fires is moderated by a number of characteristics of the local communities surrounding

the forests. Before the intervention, forest fires were more prevalent around communities

with lower average income, where agriculture was relatively intensive (as evidenced by

the use of chemical fertilizers and pesticides), and with better access to regional markets

(as measured by the proximity to the local road network). Regarding the program’s

effectiveness, we find that, in absolute terms, the impact on the average number of days

in a month on which a grid cell was detected to have been on fire is largest in areas where

forest fires were more prevalent before the program. We also find that the impact is larger

the smaller the distance to the neighboring villages, but otherwise the impact is by and

large independent of all other community characteristics. Our study thus predicts that

when rolled out to other forests (either within Burkina Faso, or elsewhere in the region),

the intervention will be most effective in those areas where forest fires are most frequent,

independent of their cause.

This paper contributes to two strands of literature. First, it contributes to the lit-

erature on the effectiveness of forest conservation policies that target forest fires in the

developing world. Even though (i) improved conservation in developing countries is widely

recognized to be a key component of the global effort to combat climate change and (ii)

the effectiveness of forest conservation policies in reducing deforestation has been widely

studied (Agrawal et al., 2011; Börner et al., 2020), little attention has been devoted to

exploring the effectiveness of forest policies in reducing forest fires. One exception is

Nelson and Chomitz (2011), who used exact- and nearest-neighbor matching to show

that protected areas that strictly limit access to forests by communities can reduce forest

fires in the tropical forests of Latin America, Asia, and Africa. However, policymakers

concerned about rural livelihood are less inclined to implement (strict) protected areas

and call for alternative fire reduction policies (Andam et al., 2010; Sims and Alix-Garcia,
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2017). Paudel (2021) provides evidence on the differences between community-managed

forests and non-community managed forests during the COVID-19 pandemic in Nepal.

The study finds that the restrictions on movement imposed by the government was ef-

fective in reducing the overall forest fire occurrences in non-community managed forests,

but not in that were managed by the nearby communities. The study by (Edwards et al.,

2020a) is most closely related to our, as they focus on assessing the effectiveness of a

policy aimed at reducing forest fire incidence. More specifically, they use a field exper-

iment to study the effectiveness of financial incentives to reduce forest fire damages in

humid Indonesia. They find that offering conditional payments to communities resulted

in increased forest management activities to prevent forest fires, but they do not find

an impact on forest fire occurrence, the number of fires started usage nor forest cover.1

Contrary to the findings of Edwards et al. (2020a), we find that a community forest man-

agement project improved forest fire containment in the most fire-prone month in the

dry forests of West Africa, where the vegetation is more flammable than in the tropical

forests of Indonesia. Our results are complementary to those of Edwards et al. (2020a)

in that this is effect was just temporary (both within the season and across years), and

also that it was too small to effectively increase tree cover.

Second, we contribute to the understanding of the anthropogenic sources of forest fires

in the dry forests of Africa. While ecologists have studied the environmental consequences

of forest fires in many different biomes (Cochrane, 2001, 2003; Muñoz-Rojas et al., 2016),

understanding of the socio-economic drivers of these fires is still limited, especially in

developing countries (Balboni et al., 2021). Our work is closely linked to that of Edwards

et al. (2020b) who show that fires in the rainforests of Indonesia are more prevalent in the

proximity of villages that are either very poor, or that have a long history of using fire

to clear land. We confirm the role of these socio-economic factors in the context of Sub-

Saharan Africa, where socio-economic institutions and climatic conditions are markedly
1Although not motivated by forest conservation, Jack et al. (2022) implemented a field experiment to
study the impact of payment for ecosystem services conditional on not using fires for crop residue
burning at the end of harvest in India. They find that conditional payments offered to individual
farmers reduced the use of fires for crop residue burning. However, the context of their study does not
allow them to evaluate the impact of payments on forest fires.
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different. Our results also support earlier findings from Latin-America that forest fires

are prevalent around forests that are accessible by roads (Nepstad et al., 2001; Joppa and

Pfaff, 2010). We show that access to forests is a key factor for consideration for forest

management policies as it mitigates the effectiveness of these policies in reducing forest

fires and where the drivers of deforestation are common between countries (Rudel, 2013).

The remainder of this paper is organized as follows. Section 2 provides an overview of

the role of forest fires in forest degradation and deforestation in Burkina Faso, as well as

the details of the program the Burkinabé government implemented to reduce forest fires.

Section 3 presents the empirical approach we use to evaluate the impact of the program

and Section 4 presents the data we use in the analysis. Section 5 presents the results

on the FIP program’s impact on both forest fires and vegetation cover, and Section 6

explores the role of the characteristics of forest communities surrounding the targeted

forests in moderating the overall impact. Section 7 concludes.

2 Description of the study context

2.1 The role of fires in forest degradation

Despite the Burkinabé government’s efforts to mitigate deforestation and forest degra-

dation, the annual rate of deforestation is considerable. In the period between 1990 and

2010, deforestation rates were, on average, about 1.1% per annum (FAO, 2014). This

rate of forest loss is especially worrisome as natural regeneration is hampered by the

country’s very low levels of rainfall (on average about 600–1000 mm per year, concen-

trated on between 50 and 100 days in the rainy season; MECV (2014)); see Figure 1 (and

then especially the grey bars therein). The rate of natural regeneration is thus low, and

hence Burkina Faso’s forests are threatened by forest fragmentation as well as by a loss

of resilience to extreme climate conditions (Miles et al., 2006).

The main proximate causes of forest cover loss in Burkina Faso are land conversion

(especially for agriculture and cattle herding), logging (especially for the production of

firewood and charcoal), and bush and forest fires; see Pouliot et al. (2012) and CIFOR
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Figure 1: Average precipitation per month of the year (left axis and grey bars), and the
average share of Burkina Faso’s protected forest areas that are affected by fire (right axis
and solid line), in the period between 2003 and 2013.

Note: The average amount of precipitation (measured in cubic millimeters) received by the 77 protected
forests in Burkina Faso in each of the calendar months in the period 2003-2013, as well as the share of
forest cover having been affected at least once by forest fires in each month in that same period.

(2016). Expansion of agricultural and pastoral activities is driven mainly by population

growth (Pouliot et al., 2012; Ouedraogo et al., 2009) combined with very limited improve-

ments in land productivity (Goldstein and Udry, 2008; Etongo et al., 2015). Population

growth is also the main driver of the increasing demand for firewood and charcoal, the

two most affordable energy sources for low-income, rural households (Ouedraogo, 2006;

Ouedraogo et al., 2011; Bensch et al., 2015).

Forest fires, the third cause of forest degradation, can occur because of natural causes,

but the vast majority of fires in Burkina Faso are man-made (Menaut et al., 1991; MECV,

2007; Devineau et al., 2010; Le Page et al., 2010; CIFOR, 2016). This is the case even

though starting fires in forested areas has been declared illegal from 1997 onward. As

shown by the solid line in Figure 1, the bulk of these fires occur in the dry season (between

November and February) when rainfall is low (as reflected by the grey bars), implying

that the vegetation is dry and highly combustible. Farmers use fire to remove crop residue

that remains after harvest and to restore soil fertility on previously cultivated land (in
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October/ November), or to clear new land (in March/ April). These fires may run out

of control and spread from cultivated lands to neighboring forest lands (Savadogo et al.,

2007; Sow et al., 2013). Fire is also used by cattle herders to stimulate regrowth of

young sprouts as feed for cattle, and by hunters (or poachers) to spot and drive out game

(Sawadogo, 2009). Fires originating from all these different types of economic activity are

detrimental to forests as they do not only damage the canopy of developed trees, but they

also hamper the development of seeds (Zida et al., 2007). Forest fires in Burkina Faso

thus result in an impoverished and fragmented forest biome, and possibly even in the

degradation of forests to savanna grasslands (Sawadogo, 2009; Devineau et al., 2010; Sow

et al., 2013). Mitigating the damages from forest fires can be achieved both by reducing

the number of forest fires started as well as by better forest fire containment.

2.2 Burkina Faso’s Forest Investment Project

As part of the country’s effort to reduce deforestation and forest degradation and to

improve carbon sequestration, Burkina Faso’s government implemented the Forest In-

vestment Program (FIP) with financial support from the World Bank, the African De-

velopment Bank, and the Climate Investment Fund. Twelve forests were selected to be

included in this pilot program aimed at reducing forest fires by a combination of partici-

patory forest management and technical forest fire containment measures.

The main axis of the intervention was the establishment of Forest Management Com-

mittees (FMC) in each of the twelve project forests. These FMCs consisted of inhabitants

of the communities surrounding the forest, and were tasked to disseminate knowledge on

forest management in their communities and to coordinate conservation efforts at the for-

est level. Most importantly, they were to raise community awareness about the adverse

consequences of forest degradation and hence about the importance of reducing the num-

ber of forest fires started, as well as explain the different methods with which fires can be

contained. As a coordinating body, the FMCs were to share tools and equipment (such

as vehicles and communication devices) with the so-called Forest Management Groups
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(FMGs)2 who implement the activities at the community level, and to also organize the

FMGs’ forest management efforts. These efforts included constructing firebreaks (strips

of cleared land in the forest to keep fires from spreading), managing the amount of com-

bustible vegetation in the forest at the beginning of the dry season, and delimiting the

forest borders (with signposts and cleared forest strips around forest borders). These

forest management efforts primarily sought to improve the monitoring and containment

of fires burning in the forests. The FIP program was scheduled to run from October 2014

to 2019, but in many of the project forests the program’s rollout did not start before early

2015. As announcement effects may affect behavior (think of the possibility of setting

more fires now to avoid the risk of not being able to use fire later), we retain October

2014 – the month in which the program was announced – as the program’s starting date,

even though the actual starting dates may differ between forests.

Of Burkina Faso’s 77 forests with protected forest status, only twelve were to be

included in the FIP program, for two reasons. First and foremost, the available budget

was not sufficient to include all forests, but the government also explicitly viewed the

intervention as a pilot of which the effectiveness was to be assessed. To determine which

forests to enroll in the program, the government ranked all 77 protected forests based on

criteria regarding forest characteristics as well as the perceived urgency of conservation,

such as the frequency of forest fires, deforestation rates, carbon sequestration capacity,

forest size, the agro-climatic zone they are located in, and the (perceived) availability of

non-timber forest products (for the full list of selection criteria, see Appendix A). The

government then selected twelve forests that ranked high on these criteria (see Figure 2).

Because of the limited budget and the intention to learn, no large-scale interventions were

implemented in the 65 non-project forests.
2Forest Management Groups (FMGs) were established in the reform of 1986 (Coulibaly-Lingani et al.,
2011) to improve the sustainable management of Burkina Faso’s forest areas. Protected forests were
partitioned into Forest Management Units (FMU) of between 20 and 40 km2, each of which was to be
managed by an FMG consisting of representatives of the nearby communities, including local leaders
and volunteers. As evidenced by the still high rate of forest loss, these FMGs were not very effective
in fostering forest conservation due to their inability to formulate effective plans and to protect forests
because of poor organization at the community level, lack of knowledge of and/or of resources for forest
management, and limited authority (Kalame et al., 2009; Bouda et al., 2011). The FMCs were thus
installed by the government to address these issues.
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The FIP program officially ran from 2014 to 2018, and it envisaged to reduce the

incidence of forest fires by the establishment of clear(er) demarcation of the 12 protected

forests (covering 284,000 hectares), paying local communities to construct 3500 km of

fire breaks, organizing the formation of the FMCs and training the FMGs to improve

their forest management skills (including the construction and maintenance of fire breaks

and monitoring the forest for fires), and on sensitizing the local communities towards the

importance of reducing the number of fires set and of better fire containment. The bulk

of the budget (73% of $8.5 mln; AFDB (2013)) was to be spent on the construction of

physical infrastructures (especially the fire breaks) and for establishment of the FMCs.

The rest of the budget was to be spent on capacity building among the FMGs (22%)

and on sensitization of the communities surrounding the forests (5%). However, the

intensity of the program implementation was not constant over the 2014-2018 period.

The bulk of the money was scheduled to be disbursed in 2015 (about 60%); because of

the start-up problems, actual spending was largest in 2016, and the last disbursements

took place 2019. The project was designed on the premise that wasteful forest fires

(unnecessary fires started, but also “useful ones” ones that were started but were not kept

under control) destroy an asset that is valuable for the local communities (also because

they have usufruct, see Kambiré et al. (2016)), and hence the bulk of the investments

were scheduled to be made in the early years of the project.

3 Empirical approach

We estimate the causal impact of the intervention on forest fire occurrences using the

Synthetic Control Method (SCM) as developed by Abadie and Gardeazabal (2003) and

Abadie et al. (2010). This method estimates the counterfactual outcome for each of the

intervention units in the intervention period (i.e., each project forest’s outcome had the

intervention not been implemented) using a convex combination of the units that had

not received the intervention (the remaining 65 of Burkina Faso’s 77 protected forests);

the estimate of the actual treatment effect is then the difference between the treated
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Figure 2: Burkina Faso’s 77 protected forests, and their status in the selection process.

Note: The orange forests are the twelve forests selected for the FIP program. The green forests were not selected, and hence form the so-called “donor forest
pool” for the Synthetic Control Method. The river marked in blue in the western part of the country is the Mouhoun river.
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unit’s actual and counterfactual outcomes. More specifically, the estimated Treatment

on the Treated effect for project forest i in intervention period t is αi,t>T0 = Yi,t>T0 −∑
j∈C wi,jYj,t>T0 , where T0 denotes the last period before the start of the intervention,

Yi,t>T0 is the outcome of interest of forest i in period t > T0, C is the set of non-treated

forests, and wi,j (with 0 ≤ wi,j ≤ 1 and
∑

j∈C wi,j = 1) is the weight assigned to the

outcome of each of the non-treated units (Yj,t>T0 ; j ∈ C).

The main challenge is thus find the set of weights wi,j that minimizes the differences

between treatment unit i ’s actual and counterfactual outcomes in the pre-intervention

period in terms of both variables that are predicted to affect the outcome variable of inter-

est (in our case, forest size and forest precipitation rates affecting forest fire occurrences)

and pre-intervention values of the outcome variable (in our case, forest fire occurrences);

see Appendix B for a more detailed explanation of the process. Intuitively, if weights

can be found such that the synthetic control (or the predicted counterfactual outcome,∑
j∈C wi,jYj,t) closely traces the outcomes of the treated unit (Yi,t) in the pre-intervention

period (t ≤ T0), it is also likely to provide an accurate estimate of the treated unit’s coun-

terfactual outcome in the post-intervention period.3 Having estimated αit for each of the

project forests and using K to denote the set of project forests, the average treatment

effect then equals αt>T0 =
1

|K|
∑

i∈K αi,t>T0 .

We evaluate the likelihood of any results being false positives by using the placebo

test approach proposed by Abadie et al. (2010) and Cavallo et al. (2013). Intuitively,

the smaller the share of placebo estimates exceeding the estimated treatment effects,

the more likely it is that the treatment was indeed effective, and hence this share psignif

can serve as the estimated treatment effect’s pseudo-significance level. Because poor

pre-intervention fits may result in inflated treatment estimates, we follow Abadie (2021)

and scale the treatment estimates by the goodness of fit of their synthetic control in
3By not just fitting on pre-treatment forest fire outcomes but also on observable pre-treatment char-
acteristics thought to be predictive of forest fire outcomes, the method reduces the likelihood that
unobservable time-varying characteristics cause outcomes of the synthetic control unit to differ from
those of the treated unit in the intervention periods. In other words, fitting on both pre-treatment
outcomes and observable characteristics helps ensure that the estimated treatment effect is not affected
by unobservables even if they systematically differ between treated and non-treated units before the
start of the intervention.
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the pre-intervention period; see equation (9) in Appendix B.4 We calculate the pseudo-

significance levels of our estimates using placebo tests on 5 million combinations of twelve

of Burkina Faso’s 65 non-project forests.

The Synthetic Control Method is better suited to estimate causal impacts for this

particular study than other, more standard, methods, like difference-in-difference models

with matching. Matching of the project forests to non-project forests is not feasible

because neither the scores on each of the criteria nor the weights attached to each of

these criteria are available; see Appendix A. And because selection into treatment was

non-random, the parallel trend assumption needed for difference-in-difference methods is

very likely to be violated.5 Finally, the SCM has the added benefit that the method is

able to estimate the per-period treatment impacts even if the number of project forests

is relatively small. As such, the method is ideally suited to evaluate not just the average

effectiveness of the intervention, but also the dynamics of the treatment effect.

4 Data and estimation procedure

We use satellite data from NASA’s MODIS’s Active Fire Product (Giglio et al., 2016)

(publicly accessible via Google Earth Engine; see Gorelick et al. (2017)) to construct a

panel of monthly grid-cell data on forest fires for each of Burkina Faso’s 77 protected

forests in the period from January 2003 to December 2019. On each day, the MODIS

collection identifies pixels that contain at least one actively burning fire based on thermal

hotspot detections (Giglio et al., 2016, 2018b). The collection has a resolution of 1 km2

4For the SCM to work well, the evaluated forests (project, and placebo) need to lie within the convex
hull of the set of all control forests. If not, the requirements that 0 ≤ wi,j ≤ 1 and

∑
j∈C wi,j = 1 result

in a poor fit in the pre-intervention period, and not correcting for the quality of pre-intervention fit
would result in a higher rate of false positives. This is especially relevant for the placebo tests because,
by definition, some of the placebo forests will lie outside the convex hull. We address this by scaling all
treatment estimates by each synthetic control’s Root Mean Squared Prediction Error (RMSPE) for the
pre-intervention period (Abadie et al., 2010; Abadie, 2021; Galiani and Quistorff, 2017). Intuitively, a
poorer pre-treatment fit of the synthetic unit leads to a large RMSPE, which in turn increases the share
of scaled placebo estimates that are larger than that of the treated unit (all else equal). See Appendix B
for a more detailed explanation.

5As shown in Figure C1 in Appendix C, the average number of days a forest grid cell was detected
to be on fire is similar in the project and non-project forests in the pre-intervention years, and so is
their co-movement. However, these averages hide substantial differences between forests, so that a
difference-in-differences approach is not feasible.
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and provides global coverage every one or two days. Our main measure of forest fire

occurrences is the number of days in a month on which a hotspot was detected on a

forest grid cell, averaged over all grid cells in a forest. This measure thus simultaneously

captures two dimensions of forest fires – the number of grid cells that were on fire in

a month, but also the number of days each of the grid cells was on fire in that month.

Following Hantson et al. (2013) We will refer to this measure as “forest fire occurrences”,

which is thus forest- and month-specific.

MODIS reports the data on hotspots detected with different levels of confidence (be-

tween 0 and 100%) for each detected fire. Figure 3 presents the pre-intervention fire

occurrences, averaged over the pre-intervention period 2003-2013, for each month of the

calendar year, using three different confidence thresholds – 30%, 50% and 80%. Con-

sistent with Figure 1, the three panels of Figure 3 show that fires occur mostly in the

dry season (November-February), and especially so in November and December, the first

two post-harvest months. Forest fires are close to absent in May and June, at the begin-

ning of the new agricultural season; fires thus seem not to be started very frequently to

clear land. This is consistent with the observation by Kambiré et al. (2016, p. 5) that

most of the land clearing occurs in the Sudanian zone of the country, whereas most of

our treatment forests are located in the Sudano-Sahellian part of the country (Kambiré

et al., 2016, p.2)).

Regarding possible systematic differences between the project and non-project forests,

the panels in Figure 3 also show that the mean fire occurrences are similar in the (then

yet to be) treated project forests and in the 65 other non-project forests (depicted by

the continuous and dashed lines, respectively). Also note that the variance around these

means is quite substantial (as indicated by the blue- and red-shaded areas, representing

the 25% and 75% percentiles). We focus our analyses on those fires that were detected

with a minimum confidence of 30% – the threshold that MODIS identified as the cut-off

for nominal-confidence levels. We test whether our results are robust to using the 50%

confidence criterion, but we do not do so for the 80% level. The program was designed to

not just improve forest fire containment but also reduce the number of forest fires started.
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According to Liu et al. (2018) the 80% confidence level is too strict to pick up smaller fires

in Sub-Saharan Africa – the ones that are started, but are subsequently well-contained;

see also Devineau et al. (2010) and Schroeder et al. (2014).

Figure 3: Monthly fire occurrences in the project and non-project forests, averaged over
the period 2003-2013, and for different levels of detection confidence.

Note: Average forest fire occurrences are depicted by the blue solid and red dashed lines. The top and
bottom of the blue and red shaded areas capture the 25th and 75th percentile of fire occurrences between
2003 and 2013 for the project and non-project forests. The threshold confidence levels for detection are
30%, 50%, and 80% for panels (a), (b), and (c) respectively.

We decided to use MODIS’s Active Fire Product, and not its Burned Area Product,

for two reasons. First, the intervention that we study aimed to reduce the area burned

via two mechanisms: (i) reducing the number of forest fires started (e.g., by raising

awareness about the problems associated with forest fires), and (ii) preventing fires from

running out of control (again by raising awareness, but also by constructing fire breaks).

The burned area product is well able to detect the fires that ran out of control, but it

is less able to detect forest fires that were started but subsequently properly contained

(Giglio et al., 2018a; Boschetti et al., 2019; Liu et al., 2018). Using the burned area

product MODIS data base thus would thus not allow us to provide insight into why the
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intervention may have been effective – was it successful because it managed to reduce the

number of forest fires started, or because it managed to induce the local population to

better contain the fires they set? Second, the pattern of the shares of forest area affected

in each of the months is very similar in both the Active Fire Product and in the Burned

Area Product (albeit that the share is lower in the latter). That means that absent any

systematic biases in either of these measurement instruments between project and non-

project forests, the percentage difference between the outcomes in the project forests and

in the non-project forests (as represented in the synthetic control) is likely to be the same

for the area burned as for the hotspots. We also decided to not use the fire brightness

in MODIS’s Active Fire Product. This product is interesting, as the amount of damage

a forest fire gives rise to is increasing in the intensity of the fire (Johnston et al., 2017).

The year-to-year brightness outcomes were similar between the project and non-project

forests, both in terms of levels and in changes in over time. That means that, conditional

on the number of fires started, the intensity is unlikely to have been affected.

Forest fire occurrences are thus our main indicator variable, but it should be noted

that this measure may hide important differences. A forest fire occurrence of 0.2 days

per month may mean that two of every ten grid cells in a forest experienced a forest

fire on one day of the month, or that fire was detected on one out of ten grid cells on

two days in that month. Which of the two is the correct interpretation of the observed

forest fire occurrence is important because fires in the Sahelian savannah zone degrade

forests primarily by damaging the seeds and destroying the canopy of young saplings

(Zida et al., 2007). That means that fires taking place on two different grid cells may be

more damaging than a single fire affecting the same grid cell on two consecutive days. It

is thus important to know not just (the changes in) forest fire occurrences, but also (the

changes in) the share of forest grid cells that experienced one or more fires in a specific

month. And if the program proves to have been successful, it would also be useful to

know the mechanism via which the program managed to reduce forest fire occurrences.

Was it effective because it resulted in a decrease in the number of fires started, or was it

effective because were the fires better contained?
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Table 1: Descriptive statistics of the averages over the pre-intervention period of the
share of forest areas affected by fire, the number of fires started, and the number of grid
cells burned per fire, in the two months of the year in which forest fires are most frequent
– November and December.

(1) (2) (3)
All forests Project forests Non-project forests

Variable Mean (SD) Mean (SD) Mean (SD)

November
Share of unique forest grid cells affected by fire 0.303

(0.305)
0.262

(0.179)
0.311

(0.322)

# forest fires started 11.172
(19.296)

8.568
(7.558)

11.653
(20.717)

Number of square kilometers affected per fire 5.659
(5.567)

5.961
(2.885)

5.604
(5.930)

December

Share of unique forest grid cells affected by fire 0.365
(0.302)

0.330
(0.263)

0.371
(0.308)

# forest fires started 11.682
(16.102)

12.492
(15.212)

11.533
(16.266)

Number of square kilometers affected per fire 5.410
(4.423)

6.083
(3.105)

5.286
(4.616)

N 847 132 715

Note: Means and standard deviations of the three additional forest fire measures of all forests are
presented in Column (1); those for the program and non-program forests are presented in Columns (2)
and (3), respectively. The first three rows show the summary statistics for fires in November, while the
second three rows correspond to December fires. N indicates the total number of pre-treatment forest-
year observations in the respective (sub)groups.

To answer these questions, we calculate three additional forest fire indicators that

are also specific to each forest and for each month of the year. The first is the share of

grid cells in a forest on which at least one forest fire was detected in the month under

consideration. Our second additional indicator is the number of fires that were started

in a month. We define a fire event as a contiguous set of grid cells on which fires were

detected on one day of the month, whereas none of these grid cells were on fire on the

previous day. The latter criterion makes sure that a forest fire that lasted for more than

one day is coded as one fire event, and the contiguity criterion implies that we assume

that fires on contiguous grid cells emanate from the same initial incident. And we can

then also measure the spatial spread of the forest fires, our third additional indicator. We

do so by calculating the average number of contiguous grid cells on which a hotspot was

detected on the current but not on the previous day. This thus links the area affected

to unique forest fire events, and hence avoids double counting. Table 1 shows that in

November and December, when most fires were observed, fires were detected on 25-36%
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of the forest grids average, the average number of fires ignited was about 11, and the

average size of the fires was 5-6 km2 before the program.

We use the Synthetic Control Method to estimate the FIP program’s impact on each

of the four forest fire measures: forest fire occurrences, the share of a forest grid cells

having been on fire at least once, the number of forest fires started, and the extent to

which forest fires spread out.6 To apply the SCM, we use the synth_runner STATA

package implemented by Galiani and Quistorff (2017). As forest characteristics that pre-

dict fire occurrences, we use the annual panel of 2006-2013 pre-treatment outcomes,the

average annual precipitation in the forest before the treatment, and the size of the forest

(measured at baseline, in 2013) to construct the synthetic control forest for each of the

treatment forests. Although the relationship between each of these two forest character-

istics and the actual forest fire occurrences is ex-ante ambiguous7, including them in the

weighting process will improve the fit, independent of the exact relationship.8

We have monthly data on forest fires, and this relatively high frequency poses a chal-

lenge to the SCM approach for two reasons. First, applying the SCM to high frequency

and highly varying data may yield a synthetic control that gives relatively more weight

to idiosyncratic shocks (i.e., to the number of forest fires in the pre-treatment period)
6While it would also be interesting to have information on the duration of forest fires, the MODIS data
set does not contain the necessary information (Balboni et al., 2021). We can approximate it, however,
by taking the ratio of forest fire occurrences and the share of forest grid cells that were affected at least
once during the month. This would provide an upper-bound estimate of the average duration of fires
because it does not take into account whether grid cells were on fire on consecutive days or not. An
analysis of this fifth (and imprecise) indicator would not yield any new insights because we already
analyze the numerator and denominator separately.

7Forest size is expected to affect forest fire occurrences because of two reasons. First, man-made fires
are more likely to be started on the forest fringe than in the interior (especially if agriculture is the
main activity causing forest fires), so that larger forests may have, on average, fewer forest fires per
grid cell. Alternatively, larger forests may have more fire occurrences because they are more difficult
to monitor. And also the relationship between precipitation and forest fires is also ambiguous ex ante.
In drier forests the vegetation is more prone to catching fire and the fire is likely to spread wider too.
But then it may also be the case that agricultural activity is higher in areas with more precipitation,
so that forest fires are more pronounced in forests with higher precipitation rates. Whichever of the
two opposing mechanism is dominant for each of these two variables, including precipitation rates and
forest size in the SCM’s weighting process will improve the accuracy of the synthetic control.

8Ideally, one could also include socio-economic characteristics of the forest communities as predictors to
improve the credibility of the synthetic control units. However, the 2014 Living Standard Measurement
Survey we use was collected in a sample of communities in the country and it was not feasible for us to
appropriately aggregate the responses to the forest level. We thus do no include these characteristics
to the estimation of the program’s impact but we will use them to study the robustness of the main
impact and the heterogeneity of the program’s impact at the subforest-level in Section 6.
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and relatively little weight to the predictors of the outcome variable (precipitation and

forest size), leading to biased estimates of the counterfactual (Dube and Zipperer, 2015;

Robbins et al., 2017). Second, high variation in the data prevent the detection of small

or even moderate effect sizes as these effects would be similar in size to the prediction

errors in the pre-treatment outcomes due to imperfect fit (Abadie, 2021). We address

these concerns by applying the SCM to the forest fire indicators for each of the seven

months in the dry season (October-April), those months of the year in which forest fires

(may) occur; see Figure 1. For instance, to estimate the impact of the forest fire pre-

vention program on forest fires in November, we construct synthetic controls by using

forest fire occurrences in the month of November as well as by using time-invariant forest

characteristics (forest size and precipitation).

5 Overall impact of the FIP

5.1 Impact on monthly forest fire occurrences

We first test whether the FIP program was effective in reducing the number of days the

average forest grid cell was on fire, for each of the seven months of the dry season (October

through April). We present the results on forest fires with a detection confidence of 30%

or better in Figure 4. In each of the seven panels of the figure the solid line represents

the average of fire occurrences observed in the project forests, the dashed line reflects

those in the corresponding synthetic controls, and the grey vertical line indicates the last

observation prior to the start of the intervention (in October 2014). As is clear from this

figure, the synthetic controls closely match the observed pre-intervention outcomes (i.e., in

2003-2013/2014) of the treatment forests in each of the seven months, and especially so in

the last two to three years of the pre-intervention period. Indeed, the root mean squared

prediction errors (RMSPEs) in the pre-intervention period are below 0.06 days per month

in November, December, and January (when average fire occurrences are higher; see

Figure 1), and below 0.03 days in March, April, May, and October (when fire occurrences

tend to be less frequent); see also Table C1 in Appendix C. The synthetic controls we
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Figure 4: Fire occurrences in the project forests in each of the seven dry months of the
year, and the counterfactual outcome as derived using the Synthetic Control Method.

(a) October (b) November (c) December

(d) January (e) February (f) March

(g) April

Note: The panels in this figure present the average number of days a fire was detected on a grid cell.
The continuous blue lines depict the observed fire occurrences in project forests with at least 30% fire
detection confidence, whereas the red dashed lines show the counterfactual outcomes as derived from
the Synthetic Control Method. The last observation before the start of the program is indicated by the
black vertical line. As the program was launched in October 2014, the last pre-intervention observation
is for 2013 for the months of October to December, and for 2014 for January-April.

constructed do not only properly reproduce the pre-treatment outcomes averaged over

all twelve treatment forests, but also those for each of the treatment forests separately

(see Figure C2 in Appendix C). And this does not only hold for the case of forest fires

that are detected with a 30% confidence level, but also when using the 50% criterion; see

Figure C3 in Appendix C. Our results are thus robust to changes in forest fire detection

confidence levels.

Regarding the effectiveness of the intervention in reducing the number of forest fire
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occurrences, Figure 4 shows that the post-intervention differences between the treatment

forests and their synthetic controls tend to be small in all months except for, possibly,

November – and then only for the first three or four years. This is confirmed by the SCM

treatment estimates
(
αt =

1
|K|

∑
i∈K αit

)
presented in Table 2. Columns (1) and (2) of

this table present the estimated impact on fire occurrences with a minimum detection

confidence of 30% and 50%, respectively. Note that the associated p-values are presented

in square brackets, and that those with p < 0.10 are printed in bold.

As already suggested by the graphical evidence presented in Figure 4, Table 2 doc-

uments that the FIP’s intervention only managed to significantly reduce forest fires in

November, the post-harvest month. In the first year of the intervention, the number of

days the average grid cell was on fire in that month decreased by 0.073 compared to the

synthetic control; see Column (1). While this effect is sizeable (as it is equal to a 43%

reduction in forest fire occurrences), treatment effects were too divergent between the

twelve treatment forests for this reduction to be significant. In the subsequent years the

treatment effect increased from 0.073 (in 2014) to 0.126 (in 2016), after which it started

to decline. And while the effects were still considerable in 2018 (with the average grid cell

in the treatment forest experiencing 0.054 fewer days on fire than the synthetic control

unit), they are also measured with less precision, and the effect is fully extinguished by

2019. A similar pattern emerges when using the 50% confidence criterion (see Column

(2) of Table 2).

There are no discernible effects in any of the other months of the year except for March,

where the program seems to have have resulted in a reduction in forest fire occurrences

in 2017 and in an increase thereof in 2019. However, when using the 30% confidence

criterion these impact are small (a decrease or increase of less than 0.025 days of fire on

the average grid cell; see Column (1)), and virtually zero (and highly insignificant) when

using the 50% criterion (in Column (2)). This suggests that the March effects were driven

by smaller fires (that are detectable at the 30% confidence level, but not at the 50% level),

but this is at odds with the general observation of land clearing fires tending to be large

(to clear land for agriculture, or to make room for young shoots to be used as fodder for
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Table 2: Estimated impacts of the forest fire prevention program on forest fire occurrences
per calendar month, for the period 2014-2019.

(1) (2)
Fire occurrences

Month Year C30 C50

Oct 2014 –0.033 –0.027
[0.116] [0.178]

2015 –0.024 –0.013
[0.184] [0.218]

2016 –0.024 –0.035
[0.776] [0.727]

2017 –0.014 –0.039
[0.102] [0.461]

2018 0.000 –0.000
[1.000] [0.856]

2019 0.001 –0.002
[0.322] [0.859]

Nov 2014 –0.073 –0.040
[0.284] [0.706]

2015 -0.093*** -0.098***
[0.002] [0.004]

2016 -0.126*** -0.115***
[0.000] [0.006]

2017 -0.026*** -0.103**
[0.003] [0.020]

2018 –0.054 –0.075
[0.459] [0.636]

2019 0.023 0.015
[0.212] [0.298]

Dec 2014 –0.017 0.028
[0.901] [0.401]

2015 0.090 0.067
[0.165] [0.199]

2016 0.044 0.017
[0.856] [0.947]

2017 –0.093 –0.085
[0.241] [0.277]

2018 0.162 0.127
[0.202] [0.139]

2019 –0.143 –0.121
[0.384] [0.370]

(1) (2)
Fire occurrences

Month Year C30 C50

Jan 2015 –0.013 –0.016
[0.994] [0.878]

2016 –0.056 –0.047
[0.957] [0.882]

2017 0.036 0.035
[0.641] [0.612]

2018 0.005 –0.000
[0.731] [0.837]

2019 –0.001 –0.010
[0.621] [0.813]

Feb 2015 0.020 0.031
[0.728] [0.568]

2016 0.031 0.027
[0.568] [0.690]

2017 0.062 0.062
[0.162] [0.169]

2018 –0.029 –0.044
[0.239] [0.201]

2019 0.031 0.022
[0.121] [0.293]

Mar 2015 –0.014 –0.016
[0.304] [0.247]

2016 –0.017 –0.012
[0.442] [0.881]

2017 -0.022*** –0.002
[0.000] [0.854]

2018 –0.005 –0.006
[0.920] [0.724]

2019 0.021*** 0.020
[0.000] [0.702]

Apr 2015 0.005 0.005
[0.540] [0.834]

2016 0.002 0.002
[0.707] [0.238]

2017 –0.001 –0.001
[0.864] [0.838]

2018 –0.001 –0.001
[0.586] [0.254]

2019 0.015 0.015
[0.159] [0.497]

Note: This table presents the average decrease in the number of days a forest grid cell is on fire, as a result of the
FIP program. The effects of the program are estimated separately for each month on an annual-panel of forest level
fire occurrence in the given month. We dropped two project forests in the estimation of December effects and one
project forest in the estimation of April effects because pre-treatment fire occurrence in these forests fell outside the
convex hull. Variables in the SCM process include past fire occurrences from 2006 onwards, the size of the forests,
and the amount of annual precipitation before the FIP program. The p-values of the impact estimates (as derived
from the inference tests) are presented in square brackets; those that are not “significant” at the 10% level have been
grayed out. * p < 0.10, ** p < 0.05, *** p < 0.01.

22



cattle; see Kambiré et al. (2016)). In any case, the March results are economically very

small, and hence November is the only month in which the FIP program managed to

change forest fire occurrences.

Based on Figure 4 and Table 2, we draw two conclusions. First, the program was

not effective in reducing forest fire occurrences throughout the year; it only managed to

reduce forest fire occurrences in the first month after the harvest has been completed –

November. Second, even for the November fires the program’s impact was short-lived,

with the impact having vanished within four years.

We verify the robustness of the above conclusions using five different tests; see Ta-

ble C2 and Figure C4 in Appendix C. First, even though the inference method we use

already corrects for less-than-perfect fit between the project forests’ outcomes and their

synthetic controls in the pre-intervention period (see Appendix B), we re-estimate the

project’s impact using the Augmented SCM method Ben-Michael et al. (2021) to see

whether our estimates are biased by less-than-perfect fits. The ASCM differs from the

standard Synthetic Control Method as it allows extrapolation (i.e., it does not impose

the constraint that 0 ≤ wi,j ≤ 1 (see equation (5) in Appendix B). Comparing the pre-

intervention fit of the ASCM (see Figure C4b in Appendix C) to that of the Synthetic

Control Method (see Figure C4a), we see that the ASCM produces a near-perfect fit in

the pre-intervention period, but also that it yields a very similar estimate of the overall

impact. This is confirmed by column (2) of Table C2 in Appendix C, which yields Novem-

ber impact estimates that are very similar to those presented in column (1).9 Second, we

implement the backdating test (Abadie, 2021) to test how well the SCM is able to “predict

out of sample”. The essence of the method is to reduce the length of the training period

(the number of observations that is used to construct the synthetic control) by omitting

some of the last pre-intervention years (in our case, 2013, or 2012 and 2013), and see

whether the synthetic controls thus produced are able to accurately predict the observed

outcomes of the project forest in these last years prior to the start of the intervention.
9This holds for the average treatment effects, but also those for each individual forests – even for those
with the worst pre-treatment fits; Nazinon, Bontioli Reserve Totale and Bontioli Reserve Partielle).
Results are available upon request.
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Rather than using 2005-2014 as the training period, we construct synthetic controls using

2005-2012 and also 2005-2011. As is clear from Figure C4c and Figure C4d in Appendix C,

the synthetic controls constructed using the shorter training periods closely predict the

actual observed project forests’ outcomes in the last pre-intervention years (2013 in Fig-

ure C4c and 2012 and 2013 in Figure C4d). The synthetic control estimator is thus able

to reproduce outcomes for the treated unit in the absence of the intervention; it also

implies that there is little evidence for any biases due to anticipation effects. Also note

that the impact estimates for the intervention period itself (2014-2019) are very similar

independent of the length of the training period. This holds not just for the impact

estimates in the early years (2014 and 2015), but also for the later years (2018 and 2019),

independent of whether the SCM is tasked to predict 5-6 years into the future (as in the

core result) or 7-8 years into the future (if we reduce the training period by two years,

thus extending the prediction period by two years). Third, we test whether our treat-

ment estimates are affected by spillovers between project and non-project forests. We do

so by re-estimating the SCM impacts while excluding all non-treatment forests that are

contiguous to treatment forests. As shown in column (5) of Table C2 and Figure C4e in

Appendix C. The results are very similar, and hence the SUTVA assumption is not likely

to have been violated (Pearl, 2009).

Fourth, we test whether the results may be driven by the inclusion or exclusion of

specific control forests; see also Abadie (2021). If the size of the treatment estimates is

sensitive to the exclusion of a non-project forest from the set of donor forests, the results

may be less reliable than previously thought – as they may have been driven by large

idiosyncratic shocks on the outcome of the excluded donor forest. We thus exclude, one

by one, each of the non-project forests that received a positive weight in our main analysis

, and subsequently re-estimate the treatment estimates using the synthetic controls thus

derived. As shown in Figure C4f and column (6) of Table C2 in Appendix C, we find

that treatment estimates are again very similar to those obtained using the full set of

non-project forests. The treatment estimates thus remain by and large unaffected in

each of these three robustness tests. Fifth, we test whether our results are robust to
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also use socio-economic determinants in the SCM’s fitting process. This robustness test

is not uncontestable, because the sampling process of the data that we use (the Living

Standard Measurement Survey data set; see the list in Section 6) was designed for the

surveyed villages to be representative for the country – not for the villages surrounding

each of the forests. When using the average of each of the socio-economic characteristics

in the villages surrounding each forest, the results are again very similar; see Figure C4g

and also Column (7) in Table C2 in Appendix C.

5.2 Impact on annual tree cover and forest fire occurrences in

the agricultural year

Having confirmed the robustness of the project’s impact on November fire occurrences, we

now study whether the sizeable yet relatively short-lived impact on November forest fires

resulted in overall improved forest conservation outcomes. We do so in two steps. First,

we use the SCM to test whether the decrease in the November forest fire occurrences

resulted in a reduction in annual forest fire occurrences. Second, we test whether there

is an impact on tree cover – again using the SCM.

Regarding measuring the impact of the project on annual forest fire occurrences, we

counted the total number of days in an agricultural season (June to April) on which the

average forest grid was detected to be on fire. To estimate the impact on tree cover,

we use the annual forest level tree cover data from the Global Forest Change dataset of

Hansen et al. (2013), which combines Landsat images and MODIS data with ground-truth

verification (Hansen et al., 2010). We use this dataset to calculate the share of forest area

covered by tree canopy in each forest-year, a standard measure of tree coverage (Sims and

Alix-Garcia, 2017; Balboni et al., 2021). Net deforestation decreases this measure, while

net forest growth increases it. The results of the associated SCM analyses are presented

in Figure 5 and in Table 3.

As can be inferred from Panel (a) in Figure 5, the project reduced the year-by-year

forest fire occurrences, but the impact is small and declining. This is confirmed by

the results presented in Column (1) of Table 3. Although the point estimates start out
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negative, they gradually revert to zero, and none of the estimates are significant (p > 0.192

for all years). This (insignificant and) “vanishing” impact is consistent with the temporal

pattern of the budget expenditures that was characterized by strong “frontloading”, but

the results also make clear that the reduction in forest fire occurrences in November

(as observed in the period 2014-2017) was not sufficiently large to result in a significant

decrease in overall forest fire occurrences. And the shrinking treatment effect also implies

that there is no evidence for possible delayed effects (such as investments needing time

to become fully effective).

Figure 5: Fire occurrences in the agricultural season and tree coverage in the project
forests, and the counterfactual outcomes as derived from the Synthetic Control Method.

(a) Fire occurrences
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(b) Tree cover

Note: The left panel in the figure presents the total fire occurrences in the agricultural season, while the
right panel presents tree coverage. In both panels, the blue continuous lines depict the observed outcomes
in project forests, whereas the red dashed lines show the counterfactual outcome as derived from the
Synthetic Control Method. The last observation before the start of the program is indicated by the black
vertical line. As the program was launched in October 2014, the last pre-intervention observation is for
2013.

The outcomes of the analysis of the project’s impact on vegetation cover are presented

in Panel (b) of Figure 5 and in Column (2) of Table 3. Two features of these outcomes are

most notable. First, while average tree cover in the treatment forests is systematically

larger than that in their synthetic controls, the differences are small in the pre-intervention

period (about 0.01 percentage points on average), and the synthetic control also closely

traces the observed tree cover in the treatment forests over time. Second, the post-

intervention difference continues to be small, although the figure also seems to suggest

that the reduction in tree cover is slowed down (if not stopped) in the treated forests
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Table 3: Estimated average treatment effect on fire occurrences in the agricultural season
and tree coverage.

(1) (2)
Fire occurrence

in the
agricultural

season

Tree coverage

2014 -0.095 0.005
[0.710] [0.939]

2015 -0.113 0.006
[0.442] [0.940]

2016 -0.002 0.005
[0.954] [0.941]

2017 -0.004 0.008
[0.720] [0.922]

2018 0.343 0.009
[0.192] [0.922]

2019 0.010
[0.930]

Note: Estimates are based on the synthetic control method. Column (1) presents the estimated impact
of program on total fire occurrences, whereas Column (2) presents the impact on tree coverage. The last
pre-treatment year in annual outcomes is 2014. We do not consider 2014 to be in the treatment period
in these analyses because there are only three months from October 2014. P-values from the placebo
analyses, in which treatment effects are standardized by pre-treatment RMSPE, are in brackets. Average
fire spread is measured in km2. *** p<.01, ** p<.05, * p<.1

whereas the decline in the synthetic control seems to continue. Indeed, Column (2)

of Table 3 shows that while none of the point estimates are significantly different, the

differences in tree cover between the treated forests and their synthetic controls gradually

increases over time, from about 0.1 percentage points in 2015 to about 0.2 percentage

points in 2020.10 While the slow-down in the loss of forest is interesting, it is too small

to be of economic importance.

The results in Figure 5 and Table 3 thus confirm that the reduction in the November

forest fire occurrences was not sufficiently large for the overall decrease to be significant.

Even though the project was designed on the premise that wasteful forest fires would

destroy an asset that is valuable to the local communities (as discussed in Section 2.2),
10As is clear from Figure 5b forest cover decreased not just in the project forests, but also in the

non-project forests (and then especially so over the period 2004–2010. In the period 2014–2019 the
difference in the share of vegetation cover is somewhat larger, but remains small in absolute terms. As
already stated on Page 24, this is not likely due to technical and/or informational spillovers having to
non-project forests attenuated the project’s impact.
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strengthening the local institutions and infrastructural investments did not result in a

permanent reduction in forest fires.

5.3 Mechanism behind the reduction in November forest fire oc-

currences

Overall, the forest fire prevention program was thus not very effective. It managed to

reduced fire occurrences in just one month of the dry season (November, at the end of

the agricultural cycle) and for just a limited number of years (between 2014 and 2017),

and the program also did not result in an increase in forest cover. Still, uncovering the

mechanisms via which the November forest fires occurrences were reduced is of interest.

Has the reduction in November forestthat farmers were the main agents of change), or in

the forests’ interior (suggesting it was fires been the result of a reduction in the number of

fires started (e.g., due to improved community awareness), or because of improved forest

fire containment? And was the largest reduction achieved in the forest fringe (suggesting

that farmers were the main agents of change), or in the forests’ interior (suggesting it was

the livestock herders and hunters that changed their use of forest fires)? We now turn to

addressing these issues.

The timing of the impact – in November, when the bulk of the harvesting just has

been completed – already suggests that the intervention was particularly effective in

reducing agricultural fires. Farmers typically burn the crops residues on agricultural

plots, so we would expect large reductions in fire occurrences at the forest fringe. This is

corroborated by Table 4, which shows that most of the November forest fire reductions

took place within a 1 to 2 kilometer band away from the forest fringe. Comparing the size

of the impact estimates in that table to those in Column (1) of Table 2, we can infer that

the reduction has been largest on the forest fringe, and that the reductions in the forest

interior are smaller and less likely to be significant; see also Figure C5 in Appendix C. So

while a change in agricultural practices is likely to have been the most important driver

of the decrease in the November forest fire occurrences, other economic activities seem

to have been affected (much) less.
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Table 4: Estimated average treatment effect on fire occurrences excluding the forest fringe

(1) (2) (3)
Fire occurrences

Month Year No thresh. 1 km thresh. 2 km thresh.

Nov.

2014 –0.073 –0.053 –0.010
[0.284] [0.285] [0.971]

2015 –0.093*** –0.174*** –0.081
[0.002] [0.001] [0.116]

2016 –0.126*** –0.158** –0.106
[0.000] [0.023] [0.139]

2017 –0.026*** –0.025 –0.039
[0.003] [0.424] [0.474]

2018 –0.054 –0.118 –0.060
[0.459] [0.318] [0.698]

2019 0.023 –0.011 0.048
[0.212] [0.276] [0.955]

Note: Estimates are based on the synthetic control method using forest-month level data. We use fires
with 30% or better confidence to construct the outcomes. Treatment start from October 2014. P-values
from the placebo analyses, in which treatment effects are standardized by pre-treatment RMSPE, are in
brackets. Average fire spread is measured in km2. *** p<.01, ** p<.05, * p<.1

In Table 5 we present the program’s estimated impact on the share of grid cells

that were burned at least once in November (see Column 1 of Table 5), and we also

separately estimate the intervention’s impact on the number of forest fires started, and

their geographical spread (see Columns 2 and 3 of that table, respectively); see Figure C6

in C for graphical illustrations of these treatment effects. Comparing the Column (1)

results in Tables 2 and 5, the FIP intervention was about as effective in reducing the

total share of grid cells affected by fire in the post-harvesting month in the period 2015-

2017 as it was in reducing overall forest fire occurrences. Indeed, the percentage-point

reduction in the share of grid cells affected by fire in the 2015-2017 November months

ranged between 8.2% and 10.1%. From Columns (2) and (3) of Table 5 we can infer that

the main reason why the intervention was effective. As shown in Column (2) of Table 5,

fewer fires were started throughout the post-intervention period, but these reductions

are not significant in any of the post-intervention years except for 2016. Column (3),

however, shows that the intervention resulted in a reduced spread of forest fires over

neighboring grid cells in both 2016 and 2017: the 2.10 km2 and 1.83 km2 decreases in

the size of fire events translate into a 38% and 29% decrease, respectively. We thus find

that improved forest fire containment was a key in reductions documented in Table 2.
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The program may have also been effective in reducing the number of fires started, but

we cannot statistically distinguish the impacts from zero. Regarding 2018, note that the

estimated impact on the number of fires started (Column (2)) is negative and sizeable,

but it is not statistically significant. This impact is counteracted by a significant rebound

in the geographical spread of the fires in the same year (Column (3)). Together these

two opposing effects lead to a loss in the program’s effectiveness in reducing November

fire occurrences in the same year (see November month in Table 2).

Table 5: Impact of the intervention on the share of forests affected by fire in November in
each of the post-intervention years, as well as on the number and size of the forest fires.

(1) (2) (3)

Month Year
Share of fire
affected grids
in November

# of ignitions Avg. fire spread

Nov.

2014 –0.060 –0.867 –0.295
[0.470] [0.745] [0.678]

2015 –0.082** –0.471 0.331
[0.035] [0.416] [0.971]

2016 –0.086** –1.324** –2.108**
[0.014] [0.043] [0.032]

2017 –0.101* –0.445 –1.829***
[0.071] [0.136] [0.000]

2018 –0.059 –1.237 1.730***
[0.373] [0.268] [0.002]

2019 –0.006 –0.410 –0.481
[0.305] [0.452] [0.364]

Note: Estimates obtained using the Synthetic Control Method, using the 30% confidence criterion; p-
values are presented in parentheses. or better confidence to construct the outcomes. Treatment start
from October 2014. P-values from the placebo analyses, in which treatment effects are standardized
by pre-treatment RMSPe, are in brackets. Average fire spread is measured in km2. *** p < 0.01, **
p < 0.05, * p < 0.10.

Together our results on better fire containment and no reduction in the number of

forest fires started complement the findings of Edwards et al. (2020a). These authors

evaluate the effect of a payment for ecosystem service program in Indonesia, in which

villages were offered a large cash transfer if they did not set any fires within their vil-

lages’ boundaries. Although payments induced villagers to better monitor their peers

and to prevent them from setting fires, Edwards et al. (2020a) find that payments did

not decrease the number of villages with one or more fires, and tree coverage did not

increase either. Our findings suggest that forest conservation programs can be effective

30



in increasing villagers’ fire prevention effort and in containing fires, but not so much in

preventing fire setting and limiting the subsequent damages. Even so, it is yet to be

understood why better fire containment may not improve tree cover neither in Indonesia

or Burkina Faso.

6 The role of socio-economic characteristics in driving

(the reduction in) forest fire occurrences

Section 5 showed that the forest fire prevention program managed to reduced fire occur-

rences in just one month of the dry season and for just a limited number of years, and

also that the program did not result in an increase in forest cover. These overall effects

may hide important differences between (sub-) forests – see Figure C2 in Appendix C.

Having established that the FIP program was effective in reducing end-of-the-agricultural

cycle forest fires, we test whether the program was equally effective in all forest areas, or

whether there are marked differences in the response to the program by the communities

surrounding the forests. Differences in the number of inhabitants in the forest communi-

ties may determine the number of volunteers in the local Forest Management Groups who

construct firebreaks and contain burning fires. Wealthier communities may also be more

willing to forego income from charcoal production and to abstain from burning forest,

and they may also be better prepared to contain agricultural clearing fires on their plots.

Also, the program may be more effective in preventing agricultural fires from spreading

to remote forest areas because Forest Management Groups can better extinguish and/or

contain these fires before they reach the forests.

We study differences in the program’s impact using responses from the 2014 Living

Standards Measurement Study (LSMS) to characterize villages surrounding the forests.

Survey responses were elicited between January and March of 2014 before the program

was implemented. In order to link the fire occurrences to the survey responses, we assign

each forest grid cell to the “sphere of influence” of the geographically most proximate

village in the survey (see Appendix D for details about the matching process) and define
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Table 6: Characteristics of the villages surrounding project and non-project subforests.

(1) (2) (3)
Overall village
characteristics

Villages surrounding
project forests

Villages surrounding
non-project forests

Variable Mean (SD) Mean (SD) Mean (SD)

Number of households 173.413
(83.996)

177.517
(63.819)

172.430
(88.346)

Share of farmer households 0.980
(0.072)

0.981
(0.045)

0.979
(0.077)

Share of households using organic fertilizers 0.552
(0.269)

0.479
(0.301)

0.569
(0.259)

Share of households using inorganic fertilizers 0.582
(0.297)

0.595
(0.316)

0.579
(0.294)

Share of households heads with primary education or better 0.149
(0.150)

0.118
(0.101)

0.156
(0.159)

Value of household assets (FCFA, in natural logarithms) 12.445
(0.987)

12.060
(1.014)

12.537
(0.962)

Distance to the main road (in km) 2.792
(1.171)

3.422
(1.280)

2.641
(1.096)

Distance to the village’s subforest (in km) 1.573
(1.422)

1.055
(0.640)

1.697
(1.528)

Distance from village’s subforest to the main road (in km) 8.977
(6.293)

9.286
(3.867)

8.903
(6.756)

N 150 29 121

the set of grid cells in the same sphere as a “subforest”. By doing so, we assume that

economic activities in a specific forest location are undertaken by inhabitants of the

nearest village. We then calculate fire occurrences at the subforest level and relate the

observed fire occurrences to the characteristics of the associated village.11

Table 6 presents the socio-economic characteristics of the villages surrounding all 77

protected forests in Burkina Faso, as well as those of the subsamples of project and

non-project forests. As shown in Column (1), the average village consists of about 175

households, nearly all households engage in agriculture, about half of them use inorganic

fertilizers and the same holds for the use of organic fertilizers. The level of education is

fairly low, household assets amount to FCFA 270,000 (or about US$ 400), the average

distance from the village to the nearest protected forest is about 1.5 kilometers, and the
11As already stated in regard to the fifth robustness test in Section 5.1, aggregating the village level

characteristics to the (sub-) forest level is not straightforward. The LSMS stratification process was
designed to make sure the outcomes were representative for Burkina Faso; not all hamlets and villages
surrounding the forests are included in the 2014 data set. And while we know the weight the sample
locations receive in the national analysis, we have no information on how representative they are of
the villages surrounding each forest. Not having this information is less problematic at the subforest
level than at the forest level, because measurement errors are more likely to cancel with 29 units than
with 12.
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Figure 6: The relationship between the average rate of November fire occurrences in
subforests and the socio-economic characteristics in the neighboring villages.

−0.166**

0.258***

−0.151*

−0.178*

Number of households

% households heads with primary education or better

ln(Value of household assets)

% farmer households

% households using inorganic fertilizers

% households using organic fertilizers

Distance to the main road

Distance from subforest to the main road 

Distance to the village’s subforest

−.6 −.4 −.2 0 .2 .4
Number of days the forest’s average a grid cell is on fire

Regression includes all partitions (N=29)

Note: This figure presents the coefficients from regressing average pre-treatment November forest fire
occurrences in the treatment forests’ 29 subforests on the neighboring communities’ standardized socio-
economic characteristics, in the pre-intervention period. The dots represent the point estimates, and the
horizontal lines represent the 90% confidence intervals. ***, **, and * indicate significance at the 1, 5,
and 10 percent critical level.

average distance from a village to the main road is about 3 kilometers. More importantly,

comparing Columns (2) and (3) of Table 6 we see that differences between the project

and non-project villages tend to be small.

We implement two types of village-level analyses. First, we explore whether the

characteristics listed in Table 6 are correlated with the subforest-level November forest fire

occurrences before 2014. We do so by regressing the average of November fire occurrences

before the treatment on a set of village characteristics. The results of the cross-sectional

OLS regression are shown in Figure 6. We find that forest fires tend to occur more

frequently the poorer the village, the more intensively it makes use of chemical fertilizers

and the less it relies on organic fertilizers. And we also find that forest fires tend to occur

more frequently in subforests of villages that are better connected to the road network.

These results are in line with the findings of Bandiera et al. (2017), Balboni et al. (2021)

and Oliveira et al. (2007), who also document the relevance of agricultural dependence

and access to markets as drivers of forest fires.
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Second, we test for heterogeneous treatment effects, to explore whether the FIP in-

tervention proved to be more effective in changing the behavior of some villages than of

others. We use the SCM to estimate αNovember
srt , the subforest-specific treatment effect for

subforest s in region r in post-intervention year t (t > T0). We include all sub-forest

treatment impacts in the analysis, independent of whether they are significant.12 To con-

struct synthetic controls for each of the treated subforest we not only fitted the weights

on pre-intervention outcomes, forest size and precipitation data (as we did in Section 5),

but also on all village characteristics as presented in Table 6. After having estimated

the treatment effects for all 29 project subforests between 2014 and 2019, we regress

αNovember
srt on all village characteristics from the LSMS survey and pre-treatment average

of November fire occurrences using the following random effects panel model:

α̂November
srt = µ+ ζȲsr

Nov,t≤T0 +H ′
sΓ + νs + δr + δt + εsrt. (1)

Here, Ȳsr
Nov,t≤T0 is the average pre-intervention level of November forest fire occurrences

in subforest s in region r, Hs denotes the set of normalized (and time-invariant) charac-

teristics of the village matched with subforest s, νs is the subforest random effect, δr and

δt are the region and time fixed effects, and εsrt is the idiosyncratic error term clustered

at the forest level. The results of this analysis are presented in Figure 7.

As shown in Figure 7, we find a stronger response to the intervention in subforests

that tend to have more frequent forest fires at baseline. The heterogeneous treatment

estimate of −0.411 implies that, all else equal, subforests that faced 0.1 more days of

pre-treatment fire occurrences per month experience an additional treatment-induced

reduction in forest fires of 0.04 days for the average grid cell. Although this effect may

seem small, it is relatively large compared to the average treatment estimate of between

−0.08 to −0.14 days per month; see Table 2. We also find that larger distances between

the subforest and the corresponding village is associated with stronger reductions in forest
12Insignificant impacts may be taken at face-value, they can be interpreted as (and hence reset equal to)

zero, or they can be dropped from the analysis. Because the last two options are sensitive to the choice
of the significance threshold, we decided to do the first – we included all impacts in the analysis, even
those which are insignificant. After all, insignificant results tend to be smaller, and hence including
them (potentially) provides useful information about the size of the impact.
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Figure 7: Estimates of the heterogeneous treatment effects on November forest fire occur-
rences for the various socio-economic characteristics of each of the subforests’ neighboring
villages.

−0.411***

−0.086***

Avg. pre−treatm. fire occ.

Number of households

% households heads with primary education or better

ln(Value of household assets)

% farmer households

% households using inorganic fertilizers

% households using organic fertilizers

Distance to the main road

Distance from subforest to the main road 

Distance to the village’s subforest

−.6 −.4 −.2 0 .2

Note: This figure presents the heterogeneous treatment effects, estimated at the subforest level, for each
of the socio-economic characteristics of the adjacent village. Village characteristics in the regression are
standardized by their means and standard deviations; the regression controls for the pre-intervention
subforest fire occurrences as well as for region and year fixed effects. The dots in this figure represent the
point estimates, with point estimate values depicted adjacently for those coefficients that are significant
at the 10 percent, or better; the horizontal bars depict the 90% confidence intervals. Standard errors are
clustered at the forest level. ***, **, and * indicate significance at the 1, 5, and 10 percent critical level.

fire occurrences. The treatment-induced reduction in the number of forest fire occurrences

is 0.08 days larger for villages that are one standard deviation (about 6 km) farther away

from their subforest. Apart from baseline levels of forest fires and the distance between

subforests and villages, none of the other covariates are found to affect the intervention’s

overall effectiveness.

The inference tests we used for the regression analyses presented in Figure 7 are based

on standard z-tests. Because we cluster the standard error at the forest level, we only

have 12clusters, and hence the assumption about the distribution’s asymptotic properties

may lead to standard errors that are artificially small. Calculating the significance levels

of baseline forest fires and of the distance between subforests and villages using the Wild

Cluster Bootstrap method (see MacKinnon et al. (2023)) increases the p-values from 0.001

to 0.20 percent and from 0.06 to 0.10, respectively. Our results on these heterogeneous

impact effects are thus not robust to this alternative inference method, and hence they
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should be taken with caution. However, we also think that they are sufficiently large to

be of economic interest, and hence are an important topic for future work.

7 Conclusions

In this paper we evaluated the impact of a forest fire prevention program in twelve of

Burkina Faso’s protected forests. Forest fires cause environmental damages in the form

of both the increased emissions of greenhouse gasses and biodiversity loss. Forest fires are

particularly damaging in arid regions because low precipitation results in fires spreading

wider and vegetation regeneration being slower, resulting in forest fragmentation and

degradation. Most of the forest fires in Burkina Faso are anthropogenic, with fire being

used in economic activities such as agriculture (with the ashes acting as a natural fertil-

izer), cattle herding (to produce new shoots for grazing), hunting (to drive out game),

or charcoal production. Reducing the frequency and size of man-made forest fires is

thus essential for sustainable development, but evidence on effective fire reducing forest

conservation policies is scarce.

The program we evaluate aimed to raise community awareness about the importance

of preventing and mitigating forest fires, and to provide both the tools and knowledge

necessary for forest fire containment. We use satellite images to monitor forest fire occur-

rences in each of Burkina Faso’s 77 protected forests, for the period 2004-2019. We thus

observe the frequency of forest fires in the intervention forests, and we use the Synthetic

Control Method (Abadie et al., 2010) to estimate each treatment forest’s counterfactual

outcome by assigning proper weights to each of the non-treatment forests.

We show that overall the program was not very effective in reducing forest fires.

We find that the program reduced forest fires at the end of the agricultural season (in

November) – after harvest, when farmers tend to use fire to burn the crop residue on

their land. We do not detect any effects for any of the other months in the dry season,

and also the vegetation cover was not significantly improved either. Analyzing the forest

fires’ geographical spread suggests that the program was effective in reducing forest fires
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especially by means of better fire containment. The number of days a fire is detected on

the average grid cell of treatment forests was reduced by 35% between 2014 and 2017,

and we also find that the project’s effectiveness tends to be stronger the more prevalent

were the forest fires before the beginning of the program. Despite the initial success,

the project’s impact became statistically insignificant from 2018 onwards – even though

the new institutions aimed at improving forest management, like the Forest Management

Committees, were still in place. The project’s impact was therefore quite temporary, and

it also failed to significantly reduce the number of forest fires in any of the other months

in the dry season. We also find that the decrease in November forest fire occurrences did

not result in improved overall forest conservation outcomes – neither in terms of annual

forest fire occurrences, nor in terms of an improvement of tree cover.

We thus conclude that just mitigating the geographical spread of post-harvest fires

is not enough to substantially improve forest conservation, and that additional measures

are needed to reduce not only the number of agriculture-related forest fires, but also

the frequency and geographical spread of the fires emanating from other non-agricultural

economic activities. These insights are of obvious importance for the design of forest

conservation policies in Burkina Faso, but probably for other countries and regions as

well. The project itself if quite standard for forest conservation, as it mainly consisted of

technical assistance and local community involvement; as such, it is a typical Community

Forest Management approach (for an overview, see for example Pelletier et al. (2016).

The impact of these programs typically differ depending on the region it is implemented

– because of differences in climatological circumstances, but also because of differences in

the type and number of actors involved; see Burivalova et al. (2019); Di Girolami et al.

(2023). Still, deforestation is a major concern in arid Sub-Saharan Africa (especially

because of (the threat of) desertification), and the causes of forest fires are very similar

throughout the region (Rudel, 2013). As such, the external validity is likely to be high for

arid Sub-Saharan Africa, and maybe for other more arid regions as well (e.g. Northern

India; see Jack et al. (2022)).
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A Selection criteria for the forests to be included in

the program

The selection process of forests into the FIP program consisted of two main steps. In the

first, the government narrowed down the number of forests from 77 to 23 following the

seven selection criteria on the perceived urgency of conservation below:

• Capacity in terms of carbon sequestration of the forest in relation to the productivity

• Level of CO2 emission by wildfire

• Current level of destocking or export of carbon (forest clearing, excessive cutting of

firewood, etc.)

• Level of the ecosystems degradation/anthropisation

• Opportunities to take stock of anterior interventions in the forests

• Security level (elimination criterion)

• Main factor of deforestation/degradation

The second step of the selection process consisted of the government narrowing down the

number of forests from 23 to 12 on the basis of a set of eight criteria:

• Forest must have or must be designing a development and management plan

• Opportunity to further develop existing resources (e.g. non-timber products of

vegetal and animal origins)

• Spatial span (large forest must be privileged)

• Level of the ecosystems degradation/anthropisation

• How management of common forest areas is allocated (inter-communities and inter-

regions)

• Whether the forest is representative in terms deforestation dynamics

• Presence and activity of professional organizations

• Risk level of activating safeguard policies when interventions are done in the forest.
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B Estimation of the synthetic control outcomes

The Synthetic Control Method can be summarized as follows. Let us use K to denote the

set of treated units that were selected into the intervention, C to denote the set of non-

treated units, and |C| and |K| to denote the number of units in each. Suppose further

that we observe all units for T periods (indexed t = 1, . . . , T ), and that the intervention

started in period T0+1 (1 ≤ T0 < T ). Finally, let us denote the observed outcome of unit

i in period t by Yi,t, and the value of an observable characteristic of the same unit that is

expected to affect this outcome by zli (indexed l = 1, . . . , L). Then the SCM constructs a

synthetic control unit for each treated units k ∈ K, represented by the weighting vector

Wk = (w1,k, . . . , w|C|,k)
′ (where wik ≥ 0 ∀ i ∈ C and

∑
i∈C wik = 1), such that the set of

following conditions are met:

∑
i∈C

wi,kYit = Ykt, ∀ 1 ≤ t ≤ T0, and (2)

∑
i∈C

wi,kzli = zlk, ∀ 1 ≤ l ≤ L. (3)

Abadie et al. (2010) show that if equations (2) and (3) hold for all t ≤ T0 and for

all L baseline variables, the synthetic control unit’s predicted outcome
∑

i∈C wi,kYit is an

unbiased estimate for the counterfactual of treated unit k in treatment period t > T0.

Ideally, treated unit k’s synthetic control is thus the one with a vector of weights Wk

that exactly replicates k’s pre-intervention outcomes (see equation (2)) as well as each of

its observable baseline characteristics (see equation (3)). Fitting on both pre-treatment

outcomes and observable characteristics helps ensure that the estimated treatment effect

is not affected by differences in unobservables even if they systematically differ between

treated and non-treated units before the start of the intervention.

The process via which Wk is derived consists of two steps. In the first step the SCM

assigns a randomly selected set of “relevance weights” vm ≥ 0 to each of the M = T0 + L

constraints (see equations (2) and (3)) and collects them in an (M × M) symmetric,

diagonal, and positive semi-definite matrix (Vk). The SCM subsequently finds the set of

control units’ weights Wk(Vk) that minimizes the distance between the (M × 1) vector
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of attributes of treated unit k that need to be matched and the corresponding (M × |C|)

matrix containing the attributes of the non-treated units for the given relevance vector.

Denoting the former by Xk = (z1k, ..., zLk, Yk1, ..., YkT0)
′ and the latter by X0, the distance

function to be minimized in the first step is thus:

min
Wk

∥ Xk −X0Wk ∥Vk
=

√
(Xk −X0Wk)

′ Vk (Xk −X0Wk), (4)

s.t. wik ≥ 0 ∀ i ∈ C ∧
∑
i∈C

wik = 1. (5)

Having repeated the first step for a large number of randomly selected relevance

vectors Vk (each resulting in a specific Wk(Vk)), the second step is to find the Vk that

results in the best fit in the pre-intervention period. Collecting the pre-intervention

outcomes in a (T0×1) vector denoted by Y ≤T0

k for treated unit k and the pre-intervention

outcomes of non-treated units in a (T0 × |C|) matrix denoted by Y ≤T0

0 , Doudchenko and

Imbens (2017) propose to choose the set of relevance weights V ∗
k that minimizes the root

mean squared prediction error on the pre-intervention outcomes of the treated unit:

min
Vk

RMSPEk =

√
1

T0

(
Y

≤T0

k − Y
≤T0

0 Wk(Vk)
)′ (

Y
≤T0

k − Y
≤T0

0 Wk(Vk)
)

(6)

s.t. vmm ≥ 0 ∀ m ∧
M∑

m=1

vmm = 1. (7)

Having determined V ∗
k , the resulting treatment effect estimate of this unit in each

period t > T0 is equal to the difference between treated unit k’s observed outcome and

its counterfactual outcome as generated by its synthetic control:

αk,t = Yk,t −
∑
j∈C

wj,k(V
∗
k )Yj,t ∀ t > T0. (8)

We can then take the unweighted average of the treatment effects in period t > T0 to

calculate the average treatment on the treated effect of the intervention in the period(
αt =

1
|K|

∑
i∈K αit

)
.

To test the “significance” of the estimates, we follow the placebo-test type approach

proposed by Abadie et al. (2010) and Cavallo et al. (2013). We apply the SCM estimator
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to obtain placebo effect estimates on non-treated units and calculate the share of placebo

test results that are larger than the actual impact estimates. This method, similar in spirit

to randomization inference (Fisher, 1935; Rosenbaum, 2002), consists of selecting |K|

non-treated units from the donor pool (C) and using the SCM to estimate the “treatment

effect” for each of these “placebo-treated” units (αPlacebo
it ) with synthetic controls that

are obtained from the (properly weighed) remaining |C| − |K| non-treated units; the

average placebo treatment effect is then equal to αPlacebo
t = 1

|K|
∑

i∈K αPlacebo
it , where K

denotes the set of placebo-treated units (|K| = |K|). For each average placebo effect

estimate, the method also calculates the corresponding root mean squared prediction

error (RMSPEPlacebo; see equation (6)) to capture the quality of the synthetic controls

based on the pre-treatment fit on the observed outcomes (see also section 3). These

steps are repeated NPlacebo times (with NPlacebo sufficiently large), and significance is

then measured as the share of (normalized) average placebo impact effects that are larger

than the actual (normalized) average treatment effect (αt/RMSPE):

psignif
t =

∑NPlacebo

g=1 I
(∣∣∣ αPlacebo,g

t

RMSPEPlacebo,g

∣∣∣ > ∣∣ αt

RMSPE

∣∣)
NPlacebo . (9)

We scale the absolute treatment effect by RMSPE
(∣∣ αt

RMSPE

∣∣) as the test statistic

instead of using the absolute treatment effect (|αt|) to control for the quality of the pre-

treatment fit of the synthetic unit (see Abadie (2021)). Using the absolute treatment

effect as the test, if the pre-treatment fit of the synthetic control is imperfect, estimated

effects tend to be larger and the likelihood of false inference increases. Thus to penalize

for this inflation of the treatment effect, Abadie (2021) proposes to scale the (placebo)

treatment estimates with their pre-intervention RMSPEs. The equation above shows

that all else equal, if the synthetic control unit of the treated unit fits poorly to the

pre-treatment outcomes of the treated unit, then the significance level increases. This

is because a poor pre-treatment fit results in large RMSPEs, which in turn decreases

the test statistic of the treated unit (absolute of the effect normalized by the RMSPE,(∣∣ αt

RMSPE

∣∣)). All else equal, this results in a higher share of placebo test statistics to be

larger than that of the treated unit and thus yields higher significance level.
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C Supplementary figures and results

Figure C1: The evolution of fire occurrences in project and non-project forests over the
period 2003-2013.

Note: Average November fire occurrences over the 2003-2013 period in the month are presented in the
left panel, and while average December fire occurrences in the same period are presented in the right
panel. The blue solid and red dashed lines depict fire occurrences in project and non-project forests,
respectively. The top and bottom of the blue and red shaded areas capture the 25th and 75th percentile
of fire occurrences.
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Figure C2: November forest fire occurrences in the project forests and in the corresponding synthetic controls.
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Figure C3: Fire occurrences with a detection confidence of 50% or better in the project
forests and in their synthetic controls.

(a) October (b) November (c) December

(d) January (e) February (f) March

(g) April

Note: These figures present fire occurrences in the project forests measured in days per month per grid.
The blue continuous lines show the observed fire occurrences in project forests with at least 50% fire
detection confidence, whereas the red dashed line show the estimated counterfactual outcomes in the
absence of the FIP program. The synthetic control units, that build into the counterfactual outcomes,
are estimated separately for each months. The year before the beginning of the program (October 2014)
is is indicated with the black vertical line.
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Table C1: Pre-treatment Root Mean Square Errors of the synthetic controls.

(1) (2) (3) (4)
Synthetic Control RMSPE Simple average non-project forest RMSPE

Month RMSPE RMSPE relative to
avg. pre-treat. Y

RMSPE RMSPE relative to
avg. pre-treat. Y

1 .0424 .2104 .0972 .4821
2 .023 .3178 .0558 .7697
3 .0282 .8645 .0351 1.079
4 .0012 .3688 .0051 1.5831
10 .0281 .2829 .0495 .4989
11 .0571 .144 .1678 .4232
12 .0493 .1015 .2268 .4673
t

Note: The table shows the pre-treatment Root Mean Squared Error of the counterfactual outcomes
derived form the SCM and of the unweighted averages of all donor forests as predictors of the observed
outcomes of the program forests. Columns (1) and (3) show the absolute RMSPE measured in the
number of days a grid was detected to be on fire, while columns (2) and (4) shows the RMSPE relative
to the pre-treatment average of fire occurrences. The table shows that pre-treatment Root Mean Squared
Errors of the synthetic control units are small in absolute terms (between 0.001 days to 0.057 days per
month, see Column (1)), It also shows that the synthetic control units predict much better the pre-
treatment outcomes of the program forests than the simple average of non-program forests (columns
(1) vs (3). Column (2) of the table also shows that the differences between the synthetic units and the
observed outcomes of the program forests are small in the most fire prone months (October, November,
December, January) relative to the pre-treatment average of those outcomes (RMSPE/Ȳt<T0

): 10 to
29 percent of the pre-treatment outcomes.
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Table C2: Estimated impacts of the the program on November fire occurrences from the
robustness checks.

(1) (2) (3) (4) (5) (6) (7)

Original
estimates

ASCM
estimates

Estimates from the
backdating test

Estimates
testing

robustness to
spillovers

Estimates
from the

leave-one-out
test

Estimates
including

socio-economic
variables
for fitting

Training
period: 2006-2013 2006-2013 2006-2012 2006-2011 2006-2013

2012 –0.050
[0.699]

2013 –0.001* –0.029
[0.094] [0.459]

2014 –0.073 –0.049 –0.079 –0.087 –0.043 –0.076 –0.076
[0.284] [0.2093] [0.131] [0.232] [0.890] [0.735] [0.746]

2015 –0.093*** -0.140*** –0.094*** –0.106** –0.104** -0.103** –0.104**
[0.002] [0.0095] [0.001] [0.015] [0.019] [0.019] [0.017]

2016 –0.126*** 0.106** –0.094*** –0.094*** –0.109** -0.128*** –0.131***
[0.000] [0.040] [0.000] [0.002] [0.048] [0.002] [0.002]

2017 –0.026*** –0.015 –0.029*** –0.035* –0.129** -0.038** –0.035**
[0.003] [0.626] [0.002] [0.094] [0.026] [0.0166] [0.015]

2018 –0.054 -0.072 –0.064 –0.071 –0.103* -0.060 –0.059
[0.459] [0.485] [0.825] [0.869] [0.091] [0.327] [0.200]

2019 0.023 0.049 0.021 0.007 0.000 0.012 0.013
[0.213] [0.302] [0.154] [0.229] [0.329] [0.250] [0.237]

Note: The table presents the estimated average impact of the program on fire occurrences in November for various
robustness tests. For ease of comparison, column (1) presents the original results (i.e., the November results presented in
Table 2); these were obtained using 2006-2013 as the SCM training period (as the program started in 2014). Column (2)
presents the estimates using the Augmented Synthetic Control Method of Ben-Michael et al. (2021) instead of the standard
SCM method and 2006-2013 as the training period. Columns (3) and (4) present the estimates using 2006-2012 and 2006-
2011 as training periods with the standard SCM method, respectively. Column (5) presents estimated impacts using the
2006-2013 as the training period but excluding non-project forests adjacent to project forests from the donor pool. Column
(6) presents the average point estimates over the 34 estimations we obtained by excluding each non-project forests that
received a positive weight in our main analysis one at a time and applying the SCM on the remaining non-project forests.
Column (7) presents the estimates using the whole pre-treatment period for training, but also including the socioeconomic
variables (constructed by simple averaging at the forest level) as fitting variables. P-values from the inference tests are
presented in square brackets. Point estimates with p < 0.10 are presented in black. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure C4: Fire occurrences in November and the counterfactual outcomes from the
robustness checks.

(a) Main estimation (b) ASCM estimates
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Note: These figures present fire occurrences in project forests (blue continuous lines) in November and
the estimated counterfactuals (red dashed liens). Panel (a) shows the main results (see Figure 4b). Panel
(b) shows the estimations from the Augment Synthetic Control Method of Ben-Michael et al. (2021).
Panel (c) and (d) shows the results from the backdating method (with the standard SCM) which uses
2006-2012 and 2006-2011 as the training period, respectively. Panel (e) shows the estimations using the
standard SCM method and the years from 2006 to 2013 period as the training period, but excluding
non-project forests adjacent to project forests from the estimation. Panel (f) shows the estimation results
from the leave-one-out tests where each gray continuous line corresponds to a synthetic control units
estimated using the SCM and excluding one of the donor forests that received positive weights in the main
analysis. Panel (g) shows the results using the standard SCM and including socio-economic variables in
the fitting process.
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Figure C5: Observed fire occurrences in November in the interior of the forest.

(a) Fire occurrence using a 1km threshold (b) Fire occurrence using a 2km threshold

Note: These figures present fire occurrences within the interior of the project forests in November. In
Panel (a) we consider fire occurrences on grid cells that are at least 1 km from the forest border. In
Panel (b) we calculate the same fire occurrence using 2 km as the threshold. The blue continuous lines
show the observed outcomes in project forests (taking fires with 30% or better confidence), whereas the
red dashed line show the estimated counterfactual outcomes in the absence of the FIP program. The
beginning of the program is is indicated with the black vertical line and it corresponds to October 2014.
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Figure C6: Observed number of fires that were started, their average size, and the esti-
mated counterfactuals in project forests in November.

(a) Share of fire affected grids in November

(b) # of ignitions (c) Average spread of fires

Note: These figures present the number of fire ignitions and the average size of fires (measured in km2)
in the project forests in November. The blue continuous lines show the observed outcomes in project
forests (taking fires with 30% or better confidence), whereas the red dashed line show the estimated
counterfactual outcomes in the absence of the FIP program. The beginning of the program is is indicated
with the black vertical line and it corresponds to October 2014.
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D Sub-forest level analysis with the LSMS survey

The LSMS is a nationally representative household level survey that collected informa-

tion on household composition, households’ economic and employment status, housing,

agricultural production, health, education, and food security. The surveys were imple-

mented by the National Institute of Statistics and Demography of Burkina Faso. We

construct our community level variables based on the responses from the first round

collected between January and March of 2014.

An important limitation of the LSMS is that compared to the ten thousand settlements

in the country, the survey sample only consists of 905 enumeration areas (normally a

village, a small group of villages, or a district in a city) and only 150 could be linked to

forest partitions. More precisely, 189 forest partition can be formed, but 39 of these forest

partitions (3 in project forests and 36 in non-project forests) are small, less than 10 grid

size. Although our results are not sensitive to the inclusion of these forest grid cells in our

analysis, we omit these outliers from the sample to avoid the mis-characterization of small

forest partitions. The remaining forest partitions consist of 10 to 600 forest grid cells.

This means that villages assigned to forest partitions are not necessarily the closest to the

forest among all villages (see Figure D 7) and the assignment of survey villages to forest

partitions inherently assume that the survey village is similar to other villages between

the survey forest and the forest. This concern may be relevant, as the average Euclidean

distance between the forest partition and the corresponding LSMS village around project

forests is about 10.3 km (see Table 6) – a considerable distance indeed because of sparsity

of roads which are oftentimes also of poor quality. Therefore analyses in this section may

be subject to bias from measurement error in community characteristics to the degree

that villages surveyed in the LSMS are different from those closer to the forest.
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Figure D 7: Visualization of the LSMS villages around the Bontioli Reserve.

Note: The map shows the communities surrounding the Bontioli Reserve, which lies in the South-South-
West of Burkina Faso (highlighted in the small blue box on the right). The Bontioli Reserve is highlighted
by the orange area in the center of the map. The villages within 10 kilometres of the forest border are
represented by the yellow dots. Villages in the sample of the LSMS survey are depicted by the purple
dots.
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